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A general method for the construction of kinetic schemes of evolutionary equations
is illustrated with the simple example of the linear advection equation, where the
role of the collision effect is clarified theoretically and numerically. The application
to the compressible Euler equation and Navier–Stokes equation is explained. The
theoretical backgrounds of the existing kinetic schemes, such as the Pullin scheme
for the Euler equation and Chou–Baganoff scheme and modified Prendergast–Xu
scheme for the Navier–Stokes equation, are unified and their intrinsic errors are
revealed. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

The relation between the gasdynamic equation and its kinetic method is indirect. For
example, while the Godunov method solves the Riemann problem of the Euler equation to
evaluate the numerical flux, the kinetic flux vector splitting method for a gasdynamic equa-
tion such as the Pullin scheme [14] employs the solution of the collisionless Boltzmann equa-
tion. Since the Euler equation and Navier–Stokes equation are derived from the Boltzmann
equation by the Chapman–Enskog expansion, one may expect an increase in the accuracy
of kinetic schemes for these gasdynamic equations by the employment of the Boltzmann
equation instead of the collisionless equation. The conclusion of this plausible scenario is
not so obvious, however.

In Ref. [7], we proposed a practical higher-order kinetic scheme for the compressible
Navier–Stokes equation. The method for constructing the kinetic scheme developed there
is directly related to the gasdynamic equation and the relation between the resulting scheme
and the gasdynamic equation is transparent by construction. As by-products, the intrinsic
error of the Pullin scheme for the Euler equation and that of the Chou–Baganoff scheme for
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the Navier–Stokes equation [2] are revealed; these methods are at most first-order accurate
in time because of the lack of collision effect in the numerical flux.

The application range of the method in Ref. [7] is not restricted to the abovementioned
gasdynamic equations. In the present paper, we first illustrate the principle of the method
with the simple example of the linear advection equation, where no special knowledge of
kinetic theory is necessary. It will be shown theoretically and numerically that the accuracy
of the kinetic scheme is improved by the inclusion of collision effects in the numerical
flux. Next we review the kinetic scheme developed in Ref. [7] and give some comments
on the abovementioned plausible scenario. The Prendergast–Xu method [13] is known as
the kinetic method that takes account of the collision effect explicitly in the numerical flux.
Although it yields better results than the Chou–Bagnoff method in the viscous boundary
layer problem [22], its relation to the gasdynamic equation and its order of accuracy are
not clear from the derivation. We also refer to the legitimacy of the newest version of the
scheme [22].

2. PRINCIPLE OF THE RAILROAD METHOD

2.1. Construction of the Railroad

The method of Ref. [7], which we will hereafter refer to as the railroad method, is appli-
cable to the construction of kinetic schemes for various evolutionary equations (systems).
For a clear understanding of the principle, we start with the simple example of the Cauchy
problem of the linear advection equation,

∂u(x, t)

∂t
+ c

∂u(x, t)

∂x
= 0, (1)

u(x, 0) = u0(x), (2)

where c is a constant. First we introduce the distribution function f (x, t, ζ ) and define the
macroscopic variable u(x, t) as a moment of f . For example, we choose

u(x, t) =
∫ ∞

−∞
f (x, t, ζ ) dζ. (3)

In a manner similar to the Chapman–Enskog expansion in kinetic theory, we consider the
distribution function that depends on the space variable x and the time t only through their
macroscopic variable u. For example, we choose

f (x, t, ζ ) = u(x, t)√
π

exp[−(ζ − c)2], (4)

which is compatible with Eq. (3). Next we consider the distribution function (4) with a
macroscopic variable that satisfies Eq. (1). We substitute the distribution function (4) into
(∂t + ζ∂x ) f and covert ∂t u in the result to ∂x u using Eq. (1). Then, we have

∂ f

∂t
+ ζ

∂ f

∂x
= (ζ − c)√

π
exp[−(ζ − c)2]

∂u

∂x
. (5)

Equation (5) is merely the result of computation. From now on, we regard it together with
the definition of u, Eq. (3), as the evolutionary equation for f . If u(x, t) is the solution of
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Cauchy problem (1) and (2), then the distribution function (4) is the solution of Cauchy
problem of the kinetic equation (5) with Eq. (3) from the initial condition

f (x, 0, ζ ) = u0(x)√
π

exp[−(ζ − c)2]. (6)

The Cauchy problem of the kinetic equation (5) from the initial condition (6) is the railroad;
the solution of the macroscopic equation (1) is obtained as the moment of the solution
of the kinetic equation. The above procedure relies on the assumption of uniqueness of the
solution of the Cauchy problem for f besides the natural assumption of the existence and
uniqueness of the solution of the macroscopic equation.

2.2. Simplification of Kinetic Equation

In the railroad method, the solution of the macroscopic equation is obtained from that of
the kinetic equation. The accuracy of u depends on that of f and the computation of the
collision term is the key. If the collision term satisfies a certain condition, we can simplify
its computation as shown in the following.

The solution of Cauchy problem for the kinetic equation (5) is formally expressed in
integral form along its characteristic line as

f (x, 	t, ζ ) = f (x − 	tζ, 0, ζ ) +
∫ 	t

0
Q[ f ](x−(	t − τ)ζ, τ, ζ ) dτ, (7)

where

Q[ f ](x, t, ζ ) = (ζ − c)√
π

exp[−(ζ − c)2]
∂u

∂x
. (8)

Then u(x, 	t) is given by

u(x, 	t) =
∫ ∞

−∞
f (x − 	tζ, 0, ζ ) dζ +

∫ ∞

−∞

∫ 	t

0
Q[ f ](x−(	t − τ)ζ, τ, ζ ) dτ dζ. (9)

By applying the trapezoid rule to the integral with respect to τ , we have

u(x, 	t) =
∫ ∞

−∞
f (x − 	tζ, 0, ζ ) dζ + 	t

2

∫ ∞

−∞
[Q[ f ](x, 	t, ζ )

+ Q[ f ](x, 0, ζ )] dζ − 	t2

2

∫ ∞

−∞
ζ

∂ Q[ f ](x, 0, ζ )

∂x
dζ + O(	t3). (10)

The contribution of Q[ f ] to u(x, 	t) is O(	t) and this term is indispensable generally. If
the definition of u and the functional form of f (u(x, t), ζ ) are chosen so that the resulting
Q[ f ] satisfies the orthogonality condition∫ ∞

−∞
Q[ f ](x, t, ζ ) dζ = 0, (11)

which is satisfied in the present example, then the contribution of Q[ f ] to u(x, 	t) becomes
O(	t2). In this case, we can simplify it. In fact, if we employ the collisionless equation

∂ f

∂t
+ ζ

∂ f

∂x
= 0, (12)
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the error becomes O(	t2). That is, the intrinsic error of the kinetic scheme which is based
on the Cauchy problem of the collisionless equation is O(	t2) and the accuracy is at most
first order in time. As shown in Section 2.3, the initial condition in the form of Eq. (6) is
reconstructed using the cell-averaged values of u at the beginning of every time step. Thus,
u is not obtained as the moment of the solution of the collisionless equation (12) even if the
collisionless equation is employed in the computation of the evolution step.

2.3. Numerical Art

In this section, we employ the railroad method to derive the finite volume scheme for
Eq. (1). For simplicity we consider the case where the space region is divided into cells of
uniform size. Integrating Eq. (5) over (−∞, ∞) for ζ , over each cell (si−1/2, si+1/2) for x ,
and over the time interval (0, 	t), and making use of the orthogonality of Q[ f ], we have

Ui (	t) = Ui (0) − 1

	x

(
Fi+1/2 − Fi−1/2

)
, (13)

where

Ui (t) = 1

	x

∫ si+1/2

si−1/2

∫ ∞

−∞
f (x, t, ζ ) dζ dx, (14)

Fi+1/2 =
∫ 	t

0

∫ ∞

−∞
ζ f

(
si+1/2, t, ζ

)
dζ dt,

(15)
	x = si+1/2 − si−1/2.

The cell-averaged value Ui represents the value of u at x = si ≡ (si+1/2 + si−1/2)/2. The
numerical flux Fi+1/2 is computed from an approximate solution of the initial value problem
(5) and (6). If we employ

f
(
si+1/2, t, ζ

) = f
(
si+1/2 − tζ, 0, ζ

)
, (16)

which is the solution of the collisionless equation (12), the error of Fi+1/2 becomes O(	t2)

because Q[ f ] is multiplied by ζ in the integral and the contribution does not vanish. Thus,
we have the first-order-accurate flux. In the actual construction of the scheme, the first term
or the first two terms in the Taylor expansion of f (si+1/2 − tζ, 0, ζ ) suffice:

f
(
si+1/2, t, ζ

) = f
(
si+1/2, 0, ζ

)
, (17)

f
(
si+1/2, t, ζ

) = f
(
si+1/2, 0, ζ

) − tζ
∂ f

(
si+1/2, 0, ζ

)
∂x

. (18)

If the contribution of Q[ f ] is retained up to the order of t , i.e.,

f
(
si+1/2, t, ζ

) = f
(
si+1/2, 0, ζ

) − tζ
∂ f

∂x

(
si+1/2, 0, ζ

) + t Q[ f ]
(
si+1/2, 0, ζ

)
, (19)

we have the second-order-accurate flux.
The scheme becomes apparent when the reconstruction of the initial data is specified.

In the case of the reconstruction that allows the discontinuity at the cell boundaries, the
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numerical flux splits into two parts according to the direction of the characteristic line (the
sign of ζ ),

Fi+1/2 = F+
i+1/2 + F−

i+1/2, (20)

where

F±
i+1/2 =

∫ 	t

0

∫
ζ><0

ζ f
(
si+1/2 ∓ 0, t, ζ

)
dζ dt. (21)

The numerical flux F±
i+1/2 for Eq. (19) consists of three parts,

F±
i+1/2 = 	tG±

i+1/2 − 	t2

2

(
H±

i+1/2 − K ±
i+1/2

)
, (22)

G±
i+1/2 =

∫
ζ><0

ζ f
(
si+1/2 ∓ 0, 0, ζ

)
dζ

= 1

2
u
(
si+1/2 ∓ 0, 0

)[ ± e−c2

√
π

+ c(1 ± Erf(c))

]
, (23)

H±
i+1/2 =

∫
ζ><0

ζ 2 ∂ f

∂x

(
si+1/2 ∓ 0, 0, ζ

)
dζ

= 1

2

∂u

∂x

(
si+1/2 ∓ 0, 0

)[ ± ce−c2

√
π

+
(

c2 + 1

2

)
(1 ± Erf(c))

]
, (24)

K ±
i+1/2 =

∫
ζ><0

ζ Q[ f ]
(
si+1/2 ∓ 0, 0, ζ

)
dζ

= 1

4

∂u

∂x

(
si+1/2 ∓ 0, 0

)
(1 ± Erf(c)), (25)

where

Erf(c) = 2√
π

∫ c

0
e−s2

ds.

The numerical flux F±
i+1/2 for Eq. (17) is given by 	tG±

i+1/2 and that for Eq. (18) is given
by 	tG±

i+1/2 − (	t2/2)H±
i+1/2.

The role of the collision effect can be demonstrated without numerical computation in
the case of continuous piecewise linear distribution:

Reconstruction-I

u(x, 0) =
{

Ui (0) + Ui+1(0) − Ui (0)

	x (x − si ), for si ≤ x ≤ si+1/2,

Ui (0) + Ui (0) − Ui−1(0)

	x (x − si ), for si−1/2 ≤ x ≤ si .
(26)

In this case, we need not divide the numerical flux since u(si+1/2 + 0, 0) = u(si+1/2 − 0, 0) =
(Ui (0)+Ui+1(0))/2 and (∂u/∂x)(si+1/2+0, 0) = (∂u/∂x)(si+1/2 − 0, 0) = (Ui+1−Ui (0))/

	x . The numerical fluxes for Eqs. (17), (18), and (19) are readily obtained from Eqs. (23),
(24), and (25):

Fi+1/2 = c	tu
(
si+1/2, 0

)
, (27)
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Fi+1/2 = c	tu
(
si+1/2, 0

) −
(

c2 + 1

2

)
	t2

2

∂u
(
si+1/2, 0

)
∂x

, (28)

Fi+1/2 = cu
(
si+1/2, 0

)
	t − c2 	t2

2

∂u
(
si+1/2, 0

)
∂x

. (29)

The numerical schemes corresponding to Eq. (27), (28), and (29) are, respectively,

Ui (	t) = Ui (0) − c	t

2	x
[Ui+1(0) − Ui−1(0)], (30)

Ui (	t) = Ui (0) − c	t

2	x
[Ui+1(0) − Ui−1(0)]

+
(

c2 + 1

2

)
	t2

2	x2
[Ui+1(0) − 2Ui (0) + Ui−1(0)], (31)

and

Ui (	t) = Ui (0) − c	t

2	x
[Ui+1(0) − Ui−1(0)] + c2	t2

2	x2
[Ui+1(0) − 2Ui (0) + Ui−1(0)].

(32)

Scheme (30) is called the FTCS (forward time and central space) scheme and is uncondi-
tionally unstable. The second scheme (31) is first-order accurate in time and is stable under
the condition (c2 + 1/2)1/2	t < 	x . The derivative of f contributes to the compensation
for the negative artificial viscosity of the FTCS scheme. In scheme (32) the collision term
Q[ f ] acts to remove an excess of dissipation. That is, by taking account of the collision
effect correctly, the railroad reaches the well-known Lax–Wendroff scheme (32), which is
second-order accurate in space and time and is stable under the condition c	t < 	x . We
remark that the lack of stability is not peculiar to the choice of Eq. (17). For example, let
us consider the case of the piecewise constant initial distribution; i.e., the vlaue of u inside
the i th cell is equal to the cell-averaged value Ui . Then, the numerical flux is given by
Fi+1/2 = 	t (G+

i+1/2 + G−
i+1/2) and the resulting scheme is

Ui (	t) = Ui (0) − c	t

2	x
[Ui+1(0) − Ui−1(0)] + A(c)	t

2	x
[Ui+1(0) − 2Ui (0) + Ui−1(0)],

(33)

where

A(c) = e−c2

√
π

+ cErf(c). (34)

This scheme is stable under the condition max[A(c), c2/A(c)]	t < 	x .
Finally, we proceed to the numerical example. To demonstrate the influence of the recon-

struction step as well as that of the evolution step, we prepare two solutions for the evolution
step, Eqs. (18) and (19), and three piecewise linear reconstructions, Reconstruction-I defined
in Eq. (26) and Reconstruction-II and Reconstruction-III defined as

Reconstruction-II

u(x, 0) = Ui (0) + Ui+1(0) − Ui−1(0)

2	x
(x − si ),

(
si−1/2 ≤ x ≤ si+1/2

)
, (35)
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Reconstruction-III

u(x, 0) = Ui (0) + Si (0)(x − si ),
(
si−1/2 ≤ x ≤ si+1/2

)
,

Si = 1

	x
minmod(Vi , Wi ),

(36)

Vi = Ui+1 − Ui − 1

2
minmod(Ui+1 − 2Ui + Ui−1, Ui+2 − 2Ui+1 + Ui ),

Wi = Ui − Ui−1 + 1

2
minmod(Ui+1 − 2Ui + Ui−1, Ui − 2Ui−1 + Ui−2),

where the minmod function is defined by

minmod(x, y) =
{

m(x, y), for xy > 0,

0, for xy ≤ 0,
m(x, y) =

{
y, for |y| ≤ |x |,
x, for |y| > |x |.

Equation (35) is the Van Leer reconstruction with the central difference approximation of the
slope [21] and Eq. (36) is that with the Harten–Osher slope [5]. The demonstration problems
are taken from Laney’s textbook [6] (Test Cases 1–3), where the Cauchy problem of the linear
advection equation (1) with c = 1 is solved for −1 ≤ x ≤ 1 under the periodic condition
u(1 + s, t) = u(−1 + s, t). The initial condition and the computational parameters are as
follows:

Test Case 1

u(x, 0) = −sin(πx), 	x = 0.05,
	t

	x
= 0.8;

Test Case 2

u(x, 0) =
{

1 for |x | < 1
3 ,

0 for 1
3 ≤ |x | ≤ 1,

	x = 0.05,
	t

	x
= 0.8;

Test Case 3

u(x, 0) =
{

1 for |x | < 1
3 ,

0 for 1
3 ≤ |x | ≤ 1,

	x = 1

300
,

	t

	x
= 0.8.

The results for the sets Eq. (18), Reconstruction-II; Eq. (19), Reconstruction-I (the Lax–
Wendroff); and Eq. (19), Reconstruction-II in Test Cases 1–3 are shown in Figs. 1–3.
The schemes for Eq. (19) capture the sinusoid’s shape and the amplitude well (Fig. 1).
While the Lax–Wendroff scheme (Reconstructon-I) has a visible lagging phase error, it
is nearly invisible for Reconstruction-II. The scheme without the collision effect captures
the sinusoid’s shape with invisble phase error but the amplitude is very poor; the lack of the
collision effect causes the large artificial viscosity. As seen in Fig. 2, the result of the scheme
without the collision effect is smeared although it is free of overshoots or undershoots. The
schemes with the collision effect have spurious oscillations but Reconstruction-II gives a
better result than Reconstruction-I. The same tendency is observed in Test Case 3 (Fig. 3).
The results for the sets Eq. (18), Reconstruction-III and Eq. (19), Reconstruction-III in Test
Cases 1–3 are shown in Figs. 4–6. Owing to the well-established reconstruction technique,
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FIG. 1. Comparison of u(x, 30) in Test Case 1. The solid line indicates the exact solution and the symbols
�, �, and � indicate the results of Eq. (18), Reconstruction-II; Eq. (19), Reconstruction-I (Lax–Wendroff); and
Eq. (19), Reconstruction-II, respectively.

the result of the scheme based on Eq. (19) is improved dramatically in Test Cases 2 and 3
(Figs. 5 and 6) and the side effect of this strong medicine for the purpose of suppressing the
spurious oscillations is not visible in Test Case 1 (Fig. 4). If the slope defined by Eq. (36)
is replaced by that of the Van Leer limiter

Si =
{ 2(Ui+1 − Ui )(Ui − Ui−1)

	x(Ui+1 − Ui−1)
, for (Ui+1 − Ui )(Ui − Ui−1) > 0,

0, for (Ui+1 − Ui )(Ui − Ui−1) ≤ 0,
(37)

FIG. 2. Comparison of u(x, 4) in Test Case 2. The solid line indicates the exact solution and the symbols
�, �, and � indicate the results of Eq. (18), Reconstruction-II; Eq. (19), Reconstruction-I (Lax–Wendroff); and
Eq. (19), Reconstruction-II, respectively.
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FIG. 3. Comparison of u(x, 4) in Test Case 3. The solid line indicates the exact solution, – ·· – indicates
the result of Eq. (18), Reconstruction-II, — — indicates the result of Eq. (19), Reconstruction-I (Lax–Wendroff),
and · · · · · indicates the result of Eq. (19), Reconstruction-II.

the side effect, the clipping, becomes visible in Test Case 1 (no figure). The result of the
scheme without the collision effect is nearly independent of the reconstruction in all cases.
The intrinsic error of the scheme spoils the effectiveness of the good medicine.

The properties of the scheme, such as the accuracy, stability, and so on, depend not
only on the evolution step, with which the railroad method is concerned, but also on the
reconstruction step. From the above consideration and demonstration, we find that the
improvement in the evolution step under the rich reconstruction step makes the scheme
stable or more accurate but the improvement in the reconstruction step under the poor
evolution step is meaningless or makes the scheme unstable.

FIG. 4. Comparison of u(x, 30) in Test Case 1. The solid line indicates the exact solution and the symbols �

and � indicate the results of Eq. (18), Reconstruction-III and Eq. (19), Reconstruction-III, respectively.
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FIG. 5. Comparison of u(x, 4) in Test Case 2. The solid line indicates the exact solution and the symbols �

and � indicate the results of Eq. (18), Reconstruction-III and Eq. (19), Reconstruction-III, respectively.

3. APPLICATION TO GASDYNAMIC EQUATIONS

In this section we apply the railroad method to the compressible Euler equation and
the compressible Navier–Stokes equation derived from the Boltzmann equation by the
Chapman–Enskog expansion. The reason why we consider the Chapman–Enskog expansion
is that the railroad is buried in the expansion results and the resulting scheme can be
employed together with the slip boundary condition as the solver of the Boltzmann equation
for small Knudsen numbers, although the Navier–Stokes equation does not always give the
correct description of gas behavior even in the continuum limit [15] and the legitimacy
of this Boltzmann solver should be checked by the systematic asymptotic analysis of the

FIG. 6. Comparison of u(x, 4) in Test Case 3. The solid line indicates the exact solution – ·· – indicates the
result of Eq. (18), Reconstruction-III, and · · · · · indicates the result of Eq. (19), Reconstruction-III.
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Boltzmann equation. For the asymptotic analyses of the Boltzmann equation, see Refs. [15,
16] and the references therein. For the slip boundary condition obtained by modern analyses
of kinetic theory, the reader is referred to Refs. [17, 18] (BGK) and Refs. [8, 19] (hard-sphere
molecules).

3.1. Chapman–Enskog Expansion

Before proceeding to the application of the railroad method to the gasdynamic equation
systems, we explain the Chapman–Enskog expansion for the Boltzmann equation according
to the excellent review by Grad [4].

The main notation is summarized as follows: L is the reference length of the system under
consideration; ρ0 and T0 are the reference density and temperature; l0 is the mean free path
of the gas molecules for the equilibrium state at rest with density ρ0 and temperature T0;
ε = √

πl0/(2L); Lxi is the space coordinate system; (2RT0)
1/2ζi is the molecular velocity,

where R is the specific gas constant; L(2RT0)
−1/2 t is the time; ρ0(2RT0)

−3/2 f (xi , t, ζi ) is
the distribution function of gas molecules; ρ0ρ, (2RT0)

1/2ui , and T0T are the density, flow
velocity, and temperature of the gas, respectively.

The nondimensional Boltzmann equation is written in the form

∂ f (xi , t, ζi )

∂t
+ ζ j

∂ f (xi , t, ζi )

∂x j
= 1

ε
J ( f, f )(xi , t, ζi ), (38)

where J is the collision operator and its definition is given elsewhere, e.g., Refs. [1] and [20].
In the Chapman–Enskog expansion, the situation where 0 < ε � 1 and ∂t f ∼ ∂x f ∼ f is
considered and the distribution function f is assumed to be in the form

f = f (h, Dh, ζi , ε), (39)

where the components of the vector h represent ρ, ui , and T , i.e., h =t (ρ, ui , T ), and
D means the differential operators with respect to xi . The macroscopic variables h̃ =t

(ρ, ρui , 3ρT/2 + ρu2
k) are given by the moment of f ,

h̃ =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ψ f dζ1 dζ2 dζ3, (40)

where ψ =t (ψ0, ψ1, ψ2, ψ3, ψ4) =t (1, ζ1, ζ2, ζ3, ζ
2
k ). The distribution function f is as-

sumed to depend on xi and t only through h and Dh. It is also assumed that the time
derivatives of the macroscopic variables are in the form

∂h
∂t

= Φ(h, Dh, ε). (41)

The distribution function f and the time derivatives of the macroscopic variables Φ are
expanded into the power series of ε:

f (h, Dh, ε) = f0(h, Dh) + ε f1(h, Dh) + ε2 f2(h, Dh) + · · · , (42)

Φ(h, Dh, ε) = Φ0(h, Dh) + εΦ1(h, Dh) + ε2Φ2(h, Dh) + · · · , (43)
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Substituting Eqs. (42) and (43) into the Boltzmann equation and arranging the result in the
order of power of ε (the operator J is bilinear), we have

0 = J ( f0, f0), (44)∑
l+m=k−1

(
∂ fl

∂h
Φm + ∂ fl

∂ Dh
DΦm

)
+ ζ j

∂ fk−1

∂x j
=

∑
l+m=k

J ( fl , fm) (k ≥ 1). (45)

The sequence of integral equations are solved from the lowest order under the constraint∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ψ f0 dζ1 dζ2 dζ3 = h̃, (46)

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ψ fk dζ1 dζ2 dζ3 = 0 (k ≥ 1). (47)

Since J satisfies the orthogonality condition∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ψ J ( f, g) dζ1 dζ2 dζ3 = 0, (48)

for any f and g, the left-hand side of Eq. (45) must be orthogonal to ψ , from which
Φk(k = 0, 1, 2, . . .) are determined.

The solution of Eq. (44) is the local Maxwellian

f0 = ρ

(πT )3/2
exp(−C2), (49)

where C2 = C2
k and Ci = (ζi − ui )/T 1/2. Since f0 does not include any derivative of a

macroscopic variable, Eq. (45) for k = 1 becomes

∂ f0

∂h
Φ0 + ζ j

∂ f0

∂x j
= 2J ( f0, f1). (50)

From the compatibility condition of Eq. (50), we obtain the explicit form of Φ0. Then,

∂h
∂t

= Φ0 (51)

constitutes the compressible Euler system. The explicit form of Eq. (50) is

[
2

(
Ci C j − C2

3
δi j

)
∂ui

∂x j
+ Ci

T 1/2

(
C2 − 5

2

)
∂T

∂xi

]
f0 = 2J ( f0, f1). (52)

The distribution function f1, which gives the viscosity and thermal conductivity, is obtained
as the solution of the the integral equation (52) under the condition (47). For hard-sphere
molecules, f1 is given by

f1 = − 1

ρT 1/2

[(
Ci C j − C2

3
δi j

)
B(C)

∂ui

∂x j
+ Ci

T 1/2
A(C)

∂T

∂xi

]
f0, (53)

where the functions A(C) and B(C) are the solutions of the integral equations related to
the linearized collision operator and their accurate data are obtained in Refs. [9–11]. [The
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functions ν(ζ ) in Eqs. (A1)–(A5) in Ref. [9] should be 2
√

2ν(ζ ).] The derivatives in f1 are
first order, i.e., f1 = f1(h, ∇h, ζi ), and Eq. (45) for k = 2 becomes

∂ f0

∂h
Φ1 + ∂ f1

∂h
Φ0 + ∂ f1

∂∇h
∇Φ0 + ζ j

∂ f1

∂x j
= 2J ( f0, f2) + J ( f1, f1). (54)

The compatibility condition of Eq. (54) determines Φ1. Then,

∂h
∂t

= Φ0 + εΦ1 (55)

constitutes the compressible Navier–Stokes equation sytem.
We summarize the results of the Chapman–Enskog expansion for the BGK model equa-

tion

∂ f

∂t
+ ζ j

∂ f

∂x j
= 1

ε
ρ( f0 − f ), (56)

where f0 is the local Maxwellian defined by Eqs. (49) and (40). The equation corresponding
to Eq. (50) is

∂ f0

∂h
Φ0 + ζ j

∂ f0

∂x j
= −ρ f1. (57)

From the condition (47) for k = 1, we have Φ0, which is the same as that for the Boltzmann
equation. Then, Eq. (57) becomes[

2

(
Ci C j − C2

3
δi j

)
∂ui

∂x j
+ Ci

T 1/2

(
C2 − 5

2

)
∂T

∂xi

]
f0 = −ρ f1, (58)

from which we readily obtain f1. The equation corresponding to Eq. (54) is

∂ f0

∂h
Φ1 + ∂ f1

∂h
Φ0 + ∂ f1

∂∇h
∇Φ0 + ζ j

∂ f1

∂x j
= −ρ f2, (59)

and we have Φ1 from the condition (47) for k = 2. Then we have the compressible Navier–
Stokes system (55), which is different from that the Boltzmann equation only in the viscosity
and the thermal conductivity.

Finally, in summary, the compressible Navier–Stokes equation derived from the
Boltzmann equation for hard-sphere molecules and that from the BGK equation are

∂

∂t




ρ

ρui

ρ
[

3
2 T + u2

k

]

 + ∂

∂x j




ρu j

ρui u j + 1
2 Pi j

ρ
[

3
2 T + u2

k

]
u j + Pkj uk + Q j


 = 0, (60)

where

Pi j = Pδi j − γ1εT a

(
∂ui

∂x j
+ ∂u j

∂xi
− 2

3

∂uk

∂xk
δi j

)
, (61)

Qi = −5

4
γ2εT a ∂T

∂xi
, (62)
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and γi and a are constants: γ1 = 1.270042427, γ2 = 1.922284066, and a = 1/2 for hard-
sphere molecules [9, 10, 20] and γ1 = γ2 = a = 1 for the BGK model [17, 18, 20].

3.2. Application to the Euler System

Applying the railroad method to the compressible Euler equation (51) can readily be
done since all the necessary materials have already been prepared in the previous section.
First we assume that the functional form of the distribution function is f = f0(h(xi , t), ζi )

and the macroscopic variable h satisfy the compressible Euler equation (51). Then, we have
the kinetic equation

∂ f

∂t
+ ζ j

∂ f

∂x j
= ∂ f0

∂h
Φ0 + ζ j

∂ f0

∂x j
= 2J ( f0, f1), (63)

where the explicit expression of the right-hand side is given in Eq. (52). From the solution
of Eq. (63) and the initial condition

f (xi , 0, ζi ) = f0(h(xi , 0), ζi ), (64)

we have the solution of the compressible Euler equation.
Similarly to the linear advection equation studied in Section 2, the solution of the above

kinetic equation can be expressed in integral form along its characteristic line. Owing to
the orthogonality condition (48), h̃(xi , 	t) is evaluated as

h̃(xi , 	t) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ψ f (x − ζ j	t, 0, ζi ) dζ1 dζ2 dζ3 − 	t2 ∂

∂x j

×
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ψζ j J ( f0, f1)(xi , 0, ζi ) dζ1 dζ2 dζ3 + O(	t3). (65)

Equation (65) indicates that the error becomes O(	t2) if we omit the term J ( f0, f1); the
intrinsic error of the Pullin scheme for the compressible Euler equation, which is based on
the Cauchy problem of the collisionless equation

∂ f

∂t
+ ζ j

∂ f

∂x j
= 0, (66)

from the initial condition (64), is O(	t2), and thus, it is at most first-order accurate in
time. Deshpande [3] and Perthame [12] have developed second-order kinetic schemes for
the compressible Euler equation. Although the collisionless equation is employed, second-
order accuracy is established by the brilliant modification of the initial data. As shown
above, the intrinsic error of the scheme based on Eq. (63) is zero. That is, we can construct
the second-order-accurate scheme by modifying the kinetic equation instead of the initial
data.

If 2J ( f0, f1) in Eq. (63) is replaced by the collision term of the Boltzmann equation
(1/ε)J ( f, f ), the macroscopic variables are evaluated as

h̃(xi , 	t) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ψ f (x − ζ j	t, 0, ζi ) dζ1 dζ2 dζ3 + O(	t3), (67)

because of Eq. (44). Then, comparing Eq. (65) and Eq. (67), we find that the accuracy
decreases except for the special case of 2J ( f0, f1) = 0, i.e., no gradient for ui and T .



170 TAKU OHWADA

3.3. Application to the Compressible Navier–Stokes System

The application of the railroad method to the compressible Navier–Stokes equation (55)
is as follows. First we consider the distribution function in the form

f = f0(h, ζi ) + ε f1(h, ∇h, ζi ) (68)

and assume that its macroscopic variables h satisfy Eq. (55). Then, we have

∂ f

∂t
+ ζ j

∂ f

∂x j
= ∂ f0

∂h
Φ0 + ζ j

∂ f0

∂x j
+ ε

[
∂ f0

∂h
Φ1 + ∂ f1

∂h
Φ0 + ∂ f1

∂∇h
∇Φ0 + ζ j

∂ f1

∂x j

]

+ ε2

[
∂ f1

∂h
Φ1 + ∂ f1

∂∇h
∇Φ1

]
. (69)

All the terms in the right-hand side of Eq. (69) are buried in the results of the Chapman–
Enskog expansion. Equation (69) is rewritten in the form

∂ f

∂t
+ ζ j

∂ f

∂x j
= Q̃[ f ], (70)

where

Q̃[ f ] = 2J ( f0, f1) + ε[2J ( f0, f2) + J ( f1, f1)] + ε2

[
∂ f1

∂h
Φ1 + ∂ f1

∂∇h
∇Φ1

]
. (71)

Since all the coefficients of εk(k = 0, 1, 2) in Q̃( f ) are orthogonal to ψ , we can simplify
Eq. (69) in the following systematic way. The macroscopic variables h̃(xi , 	t) are evalu-
ated as

h̃(xi , 	t) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ψ f (xi − ζi	t, 0, ζi ) dζ1 dζ2 dζ3 − 	t2

2

∂

∂xi

×
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ψζi Q̃( f )(xi , 0, ζi ) dζ1 dζ2 dζ3 + O(	t3). (72)

If all the terms of Q̃[ f ] are omitted, then the error of h̃(xi , 	t) becomes O(	t2). This
indicates that the intrinsic error of Chou–Baganoff scheme, which is based on the solution
of the Cauchy problem for the collisionless equation (66) from the initial data in the form of
Eq. (68), is O(	t2). If 2J ( f0, f1) in Q̃[ f ] is retained, which corresponds to Eq. (63), i.e.,
the exact kinetic equation for the compressible Euler equation, the macroscopic variables
are evaluated as

h̃(xi , 	t) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ψ f (x − ζ j	t, 0, ζi ) dζ1 dζ2 dζ3 − 	t2 ∂

∂x j

×
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ψζ j J ( f0, f1)(xi , 0, ζi ) dζ1 dζ2 dζ3 + O(	t3). (73)

Comparing Eq. (72) with Eq. (73), we find that the error is O(ε	t2), which is higher order
as long as ε � 	t . In this way, we can control the accuracy of the scheme. Incidentally, the
term J ( f0, f1) in Eq. (63) is independent of the molecular model, and the dependence on
the molecular model appears only through f1 in the initial condition.
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One may expect that the replacement of 2J ( f0, f1) in Eq. (63) by the original Boltzmann
collision term (1/ε)J ( f, f ) improves the accuracy. In this case, the macroscopic variables
are evaluated as

h̃(xi , 	t)

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ψ f (x − ζ j	t, 0, ζi ) dζ1 dζ2 dζ3 − 	t2

2

∂

∂x j

×
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ψζ j [2J ( f0, f1)+ε J ( f1, f1)](xi , 0, ζi ) dζ1 dζ2 dζ3 + O(	t3). (74)

Comparing Eq. (72) with Eq. (74), we find that the error is reduced but is still O(ε	t2).
Finally we consider the kinetic scheme for the Navier–Stokes equation derived from the

BGK equation (56). In this case, the basic kinetic equation becomes

∂ f

∂t
+ ζ j

∂ f

∂x j
= Q̃NS–BGK[ f ], (75)

where

Q̃NS–BGK[ f ] = −ρ( f1 + ε f2) + ε2

[
∂ f1

∂h
Φ1 + ∂ f1

∂∇h
∇Φ1

]
, (76)

and f1 and f2 are given by Eqs. (58) and (59), respectively. Since Q̃NS–BGK [ f ] is orthogonal
to ψ , the macroscopic variables are evaluated as

h̃(xi , 	t) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ψ f (x − ζ j	t, 0, ζi ) dζ1 dζ2 dζ3 + 	t2

2

∂

∂x j

×
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ψζ j Q̃NS–BGK [ f ](xi , 0, ζi ) dζ1 dζ2 dζ3 + O(	t3). (77)

If we employ the simplified kinetic equation

∂ f

∂t
+ ζ j

∂ f

∂x j
= −ρ f1, (78)

which is equivalent to Eq. (63), the error becomes O(ε	t2) (note that f1 and f2 are or-
thogonal to ψ). Incidentally, the scheme based on Eq. (78) is employed in the numerical
demonstration of Ref. [7]. In the same way as in the derivation of Eq. (74), we find that
the accuracy is not improved even if the right-hand side of Eq. (78), −ρ f1, is replaced by
the original BGK collision term, ρ( f0 − f )/ε. This demonstrates that the intrinsic error
of the modified Prendergast–Xu scheme [22], which is based on the Cauchy problem for
the BGK equation from the initial condition in the form of Eq. (68), is O(ε	t2).

3.4. Error of Numerical Flux

In the previous section, we discussed the error of the kinetic scheme for the Navier–Stokes
equation at the level of the basic kinetic equation. Here, we discuss the error appearing in
the numerical flux.



172 TAKU OHWADA

We consider the spatially one-dimensional case to avoid inessential complexity; hereafter
we will omit all the derivatives with respect to x2 and x3. Multiplying Eq. (70) by ψ and
integrating the result over the whole velocity space R3, the cell (s j−1/2, s j+1/2), and the
time interval (0, 	t), we have

h̃ j (	t) = h̃ j (0) − 1

	x

[
F

(
x1 = s j+1/2

) − F
(
x1 = s j−1/2

)]
, (79)

where h̃ j (t) is the average of h̃(x1, t) over the cell (s j−1/2, s j+1/2), 	x = s j+1/2 − s j−1/2,
and F is the numerical flux defined by

F(x1) =
∫ 	t

0

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ψζ1 f (x1, ζi , t) dζ1 dζ2 dζ3 dt. (80)

In the actual computation of Eq. (80), an approximate solution the Cauchy problem of
Eq. (69) from the initial data in the form of Eq. (68) is employed. If the approximate
solution of the collisionless Boltzmann equation (66) without the derivative of the
Maxwellian, i.e.,

f (x1, ζi , t) = f0(x1, 0, ζi ) + ε f1(x1, 0, ζi ), (81)

is employed, which corresponds to the Chou–Baganoff scheme, the error of the resulting
numerical flux becomes O(	t2). The approximate solution of the collisionless Boltzmann
equation which is correct up to O(t) is

f (x1, ζi , t) = f0(x1, 0, ζi ) − tζ1
∂ f0

∂x1
(x1, 0, ζi ) + ε f1(x1, 0, ζi ). (82)

The error of the resulting numerical flux is, however, still O(	t2). If the approximate
solution

f (x1, ζi , t) = f0(x1, 0, ζi ) − tζ1
∂ f0

∂x1
(x1, 0, ζi ) + ε f1(x1, 0, ζi ) + 2t J ( f0, f1)(x1, 0, ζi ),

(83)

which is the one for the simplified equation (63), is employed, then the error becomes
O(ε	t2). In the case of the BGK equation, the definition of f1 changes from Eq. (53)
to Eq. (58). The term 2J ( f0, f1), which is independent of the molecular model, is ex-
pressed using f1 for the BGK equation. Then, the approximate solution corresponding to
Eq. (83) is

f (x1, ζi , t) = f0(x1, 0, ζi ) − tζ1
∂ f0

∂x1
(x1, 0, ζi ) + ε f1(x1, 0, ζi ) − tρ(x1, 0) f1(x1, 0, ζi ).

(84)

The modified Prendergast–Xu scheme for the compressible Navier–Stokes equation [22]
is based on the BGK equation (56). In the derivation of the original scheme [13], the ini-
tial distribution function is in the form of f = f0. In the modified scheme it is replaced
by f = f0 + ε f1. As shown in Section 3.3, the intrinsic error of the modified scheme
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is O(ε	t2). In the computation of the numerical flux, the discontinuous initial distri-
bution function is considered and the approximate solution with the effect of molecular
collisions is employed. The formula of the approximate solution is lengthy and it is dif-
ficult to confirm its accuracy. In Ref. [22] Xu applied the same approximation as that
employed in the discontinuous case to the case of a smooth initial distribution and ob-
tained Eq. (84). By this coincidence the accuracy of the scheme as well as its legitimacy is
confirmed. That is, the modified Prendergast–Xu scheme for the continuous reconstruction
with smoothness at the cell boundaries is derived from the BGK equation by the railroad
method.

The numerical flux for Eq. (83) or Eq. (84) is expressed in the form

F = 	tF maxwellian − 	t2

2
(F derivative − F collision) + 	tεF diffusive, (85)

where

F maxwellian =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ψζ1 f0 dζ1 dζ2 dζ3, (86)

F derivative = ∂

∂x1

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ψζ 2

1 f0 dζ1 dζ2 dζ3, (87)

F collision =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ψζ1

[
2

(
Ci C1 − C2

3
δi1

)
∂ui

∂x1

+ C1

T 1/2

(
C2 − 5

2

)
∂T

∂x1

]
f0 dζ1 dζ2 dζ3, (88)

F diffusive =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ψζ1 f1 dζ1 dζ2 dζ3. (89)

To demonstrate the role of the collision effect in the same way as in the case of the lin-
ear advection equation, we consider the case of continuous reconstruction with smooth-
ness at the cell boundaries. In this case, each part of the numerical flux is expressed
as

F maxwell =




ρu1

ρu2
1 + 1

2ρT

ρu1u2

ρu1u3

ρu1
(
u2

1 + u2
2 + u2

3 + 5
2 T

)




, (90)

F derivative = ∂

∂x1




ρu2
1 + 1

2ρT

ρu3
1 + 3

2ρT u1

ρu2
1u2 + 1

2ρT u2

ρu2
1u3 + 1

2ρT u3

ρ
[
u2

1

(
u2

1 + u2
2 + u2

3 + 4T
) + 1

2 T
(
u2

2 + u2
3

) + 5
4 T 2

]




, (91)
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F collision =




0
2
3ρT ∂u1

∂x1

1
2ρT ∂u2

∂x1

1
2ρT ∂u3

∂x1

ρT
[

4
3 u1

∂u1
∂x1

+ u2
∂u2
∂x1

+ u3
∂u3
∂x1

+ 5
4

∂T
∂x1

]




, (92)

F diffusive =




0

− 2
3γ1T a ∂u1

∂x1

− 1
2γ1T a ∂u2

∂x1

− 1
2γ1T a ∂u3

∂x1

− 4
3γ1T au1

∂u1
∂x1

− γ1T a
(
u2

∂u2
∂x1

+ u3
∂u3
∂x1

) − 5
4γ2T a ∂T

∂x1




. (93)

The numerical flux without Fdiffusive constitutes the kinetic scheme for the compressible
Euler equation. If Fmaxwellian, Fderivative, and Fcollision at the cell boundaries x1 = si±1/2 are
computed using the central difference approximation, i.e., Reconstruction-I, the resulting
scheme is the Lax–Wendroff scheme. In this reconstruction, the diffusive flux is also com-
puted by the central finite difference approximation. The modified Prendergast–Xu scheme
under this reconstruction is the Lax–Wendroff scheme with the central difference approxi-
mation of the diffiusive term. The lack of Fcollision is equivalent to the creation of a numerical
viscosity proportional to 	t , which is easily seen in the case of the BGK equation since
Fcollision is equal to −ρFdiffusive (see the last paragraph of Sec. 3.1). Thus, the computation
for viscous flows using the kinetic scheme without the collision effect is valid under the
condition 	t � ε. Finally, we mention the case of the reconstruction that allows disconti-
nuity at the cell boundaries. In this case, the numerical flux splits into two parts; the formula
of the numerical flux is derived by easy but tedious computations and the expression is
lengthy. Computer algebra software such as MATHEMATICA is useful for the derivation.
For the numerical demonstration of this scheme, we refer the reader to Ref. [7], where
the numerical examples are shown for the normal shock problem, for the Cauchy problem
without boundary [the initial temperature distribution T = 1 + exp(−x2

1) is a misprint of
T = 1 + 2 exp(−x2

1)], and for Couette flow between two parallel plates.
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